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Abstract. We present a family of ordering algorithms that can be used as a preprocessing
step prior to performing sparse LU factorization. The ordering algorithms simultaneously achieve
the objectives of selecting numerically good pivots and preserving the sparsity. We describe the
algorithmic properties and challenges in its implementation. By mixing the two objectives we show
that we can reduce the amount of fill in the factors and reduce the number of numerical problems
during factorization. On a set of large unsymmetric real problems, we obtained the median reductions
of 12% in the factorization time, of 13% in the size of the LU factors, of 20% in the number of
operations performed during the factorization phase, and of 11% in the memory needed by the
multifrontal solver MA41_UNS. A by-product of this ordering strategy is an incomplete LU-factored
matrix that can be used as a preconditioner in an iterative solver.

1. Introduction. Direct methods for sparse unsymmetric linear systems usually
involves an analysis phase preceeding the effective LU factorization [2, 10, 14, 20, 21].
The analysis phase transforms A into A with better properties for sparse factorization.
It exploits the structural information to reduce the amount of fill-in in the LU factors
and exploits the numerical information to reduce the need for numerical pivoting
during factorization.

Two separate steps can be used in sequence for these two objectives:

1. Scaling and maximum transversal algorithms are used to transform A into
A, with large entries in magnitude on the diagonal.
2. A symmetric fill-reducing ordering, which preserves the large diagonal, is used
to permute A; into A so that the factors of A are sparser than those of A;.
Thus, the ultimate factorization is

(1.1) LU = P;P,D,AD.Q,P1Q;

where D, and D, are diagonal scaling matrices, Q; is a permutation obtained from the
maximum transversal algorithm, P corresponds to the fill-reducing permutation, and
P; and Q3 are permutations corresponding to numerical pivoting during factorization.

It has been observed in [4] that permuting large entries on the diagonal (computing
Q1 based on [17]) can significantly reduce the number of numerical problems during
factorization. A standard way for finding P2 is to apply a symmetric ordering
algorithm (e.g., AMD [1]) to the structure of A; + AT, where A; = D, AD.Q;. A
better algorithm, called diagonal Markowitz with local symmetrization (or DMLS), was
developed in [5], which could exploit the unsymmetric structure of A; and was shown
to give sparser factors than with AMD.
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The above two-step approach has two drawbacks:

- The numerical treatment forces the fill-reducing ordering to restrict pivot
selection on the diagonal of A;, and so to compute a symmetric permutation,
- The ordering phase does not have numerical information to select pivots.

To improve sparsity preservation and numerical quality of the preselected pivots,
we describe in this paper a family of orderings that can select off-diagonal pivots
using a combination of structural and numerical criteria. Based on a numerical
preprocessing of the matrix we build a set of numerically acceptable pivots, referred to
as matrix C, that may contain off-diagonal entries. We then compute an unsymmetric
ordering taking into account both the structure of A and the numerical information in
C. The C matrix serves as a constraint matrix for the pivot selection and non-trivial
floating point operations can be performed on this matrix to update the characteristics
of the pivots. The new algorithm is referred to as constrained Markowitz with local
symmetrization (or CMLS).

In summary, this work extended and generalized the DMLS work in several ways:

1. We do not limit our choice of pivots to the maximum transversal of D,.,AD..
Our pivots can be chosen from a constraint matrix C that includes a
transversal but is not limited to this transversal.
2. The constraint matrix C is updated both structurally and numerically after
each step of elimination. The final C is an incomplete LU factor of D,.AD..
Thus, instead of computing the permutations Q; and Py of equation (1.1) in two
separate steps, CMLS simultaneously computes row and column permutations P, and
Q-, and the final factorization is

(1.2) LU = P;P,D,AD.Q!Qs;.

We evaluated the new ordering algorithms using two state-of-the-art direct solvers:
the multifrontal code MA41_UNS [2, 7] and the supernodal code SuperLUDIST [27, 28].
In MA41_UNS, standard partial pivoting with a threshold value is applied to locally
select numerically stable pivots within a so-called frontal matrix. It is possible that
some variables cannot be locally eliminated and are postponed for later eliminations,
which may result in an increase in the size of the LU factors and the number of
operations compared with those predicted during analysis. In SuperLUDIST, a static
pivoting strategy is used and the pivotal sequence chosen during analysis is kept the
same (i.e., P3 and Q3 are the identity matrices in equations (1.1) and (1.2)). Iterative
refinement may be needed to improve the solution.

The rest of the paper is organized as follows. Section 2 introduces the main
components of our algorithm. Section 3 defines the graph-theoretic notations and
describe the use of local symmetrization in our context. Section 4 describes the
algorithmic contributions of the proposed CMLS method. A full detailed presentation
of our implementation is given in [32]. Section 5 analyses the results of the newly
implemented CMLS algorithm when applied to real-life unsymmetric test cases.

2. Components of our unsymmetric ordering. Given a matrix A, let
Pattern(A) be the set of nonzero entries of A: Pattern(A) = {(i,j) such that a;; #
0}. Our unsymmetric ordering consists of two main steps:

e Step 1: Based on a numerical pre-treatment of the matrix A, we extract a
set of numerically acceptable pivots, referred to as the constraint matrix
C. We have Pattern(C) C Pattern(A), and if ¢;; # 0 then ¢;; = a;5.
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e Step 2 : Constrained unsymmetric ordering: the constraint matrix is used
at each step of the symbolic Gaussian elimination to control the set of eligible
pivots (possibly with respect to both numerical and structural criteria).

Before describing these two steps more precisely, we introduce definitions and
notations that will be used to describe our algorithms.

Let M = (m;;) be a matrix of order n. If M can be permuted to have n nonzeros
on the diagonal then M is structurally nonsingular. Let Gy = (V;, V¢, E) be the
bipartite graph associated with the matrix M. V,. is the set of row vertices and V is
the set of column vertices. Let (4, 5) € V, x V; then (4, j) € E if and only if m;; # 0.
A matching is a subset of edges M C E such that for all vertices v € V.UV, at
most one edge of M is incident on v. If M is structurally nonsingular, then there
exists a matching M with n edges and M is said to be a perfect matching. We
will also say that M is a perfect transversal.

For the sake of clarity, in the remainder of this paper we assume that A is
structurally nonsingular. The adaptation of our algorithms to structurally singular
matrices is straightforward but would have severely complicated our notations and
comments.

2.1. Step 1: Numerical preprocessing. The objective of this preprocessing
step is to extract the most significant (structurally and numerically) entries of the
matrix A and to use them to build the constraint matrix C.

Firstly, we scale the matrix A with the diagonal matrices D, and D., resulting
in A « D,AD.. The objective of this scaling is to homogenize the magnitude of
the entries of the matrix. In particular it helps us to compare the magnitude of
entries belonging to different rows and columns and thus to decide which entries will
be selected in our constraint matriz C. In this paper we use the scaling computed
with the maximum weighted matching algorithm [17]. All entries in our scaled matrix
then have entries lower than 1 in magnitude with a perfect transversal with entries of
magnitude equal to 1.

Secondly, a constraint matriz C can be constructed from A such that
Pattern(C) C Pattern(A) and C satisfies certain numerical and/or structural
properties. Since the entries in C correspond to the potential pivots for the subsequent
step, we only keep a subset of bounded size (typically less than 3n) of the largest
entries in the scaled matrix. Furthermore, we want C to be structurally nonsingular
and thus we add entries from A to guarantee that C includes a perfect transversal

M.

2.2. Step 2: Constrained unsymmetric ordering. Let A! = A be the
original matrix of order n and AF be the reduced matrix after eliminating the
first k — 1 pivots (not necessarily on the diagonal). Let C! = C be such that
Pattern(C') C Pattern(A'). At each step k, a pivot p* such that p* € Pattern(CF)
is selected. This selection may combine structural heuristics based on the structure
of A*¥ (e.g., approximate Markowitz count, approximate minimum fill, etc.) and
numerical heuristics carried by the C* matrix. Matrix A* is updated (remove the
row and the column of the pivot and add fill-ins in the Schur complement). Matrix
C* is updated such that C*+! remains structurally nonsingular and Pattern(CF+1)
is included in Pattern(C*), where CF* is defined as the reduced matrix after the
elimination of pivot p* in C*. The structure of A**! contains the structure of
Ck. This implies that Pattern(C*+1) C Pattern(AF+!). To keep CF structurally
nonsingular, a perfect matching in C* is maintained at each step. When there is no
ambiguity, we will omit the superscript & from the matrix notations.
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The following two considerations influence the update that will be performed on
C:
e Which metric do we use to select a pivot?
e Which entries and/or values are added/updated in C at each step of the
elimination?
Note that if we consider the magnitude of C’s entries to select a pivot, both the
pattern of C and the numerical values need be stored and updated. Furthermore, any
structural information about each entry (7,j) in C should carry information on the
reduced matrix associated with the complete matrix A.
The ordering algorithm also depends on how C is updated at each step. As
mentioned before in the description of Step 2, we want at each step to guarantee
that:

(2.1) C must remain structurally nonsingular,

(2.2) Pattern(CF+Y) C Pattern(CF).

3. Notations and definitions. Before giving the algorithmic details of the
proposed CMLS method, we introduce the graph structures and notations that will
be used in this paper. We first describe the main properties of bipartite graphs
and bipartite quotient graphs and their relationship with Gaussian elimination. We
then introduce the notations that will be used to describe our algorithms and define
local symmetrization [5], a technique that simplifies the bipartite quotient graph
implementation. Note that we use calligraphic font for notations related to quotient
graphs and Roman font for other graphs.

3.1. Bipartite graph. Let M = (m;;) be a matrix and Gy = (V,,V,, E)
be its associated bipartite graph. Let R; denote the structure of row i, i.e.,
R, = {j € V. st. (i,j) € E}. Let C; denote the structure of column j, i.e.,
C;={ieV,st. (i,j) € E}.

In Gaussian elimination, when a pivot p = (rp,¢p) is eliminated, a new matrix,
referred to as the reduced matrix M is computed. M is obtained from M by removing
row 1, and column ¢, and by adding the Schur complement entries. In terms of graph
manipulations, this elimination adds edges in the bipartite graph of M to connect all
the rows adjacent to ¢, to all the columns adjacent to r,. This set of connected rows
and columns is referred to as a bi-clique.

The symbolic factorization of M is done by building MF for k = 1 to n, with
M' = M. After eliminating the k‘* pivot, we compute M*+t! = M¥.

3.2. Bipartite quotient graph. In the previous section we have shown that, to
update the bipartite graph we must add, at each elimination step, entries to the Schur
complement matrix which may be costly to update and to store. It has been shown
that quotient graphs can be used to efficiently model the factorization of symmetric
matrices [20, 24]. The main idea is to use a compact representation of the cliques
associated with the eliminated vertices. This concept can be extended (see [31]) to
model the LU factorization. In this case, a bipartite quotient graph can be used
to represent the edges in a bi-clique. It has then been shown in [31] that doing so
the elimination can be modeled in space bounded by the size of the original matrix
A. In this section, we first explain why the quotient graph model leads to more
complex algorithms on unsymmetric matrices than on symmetric matrices. We then
briefly define element absorption and explain the use of local symmetrization to reduce
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the quotient graph complexity. Finally we introduce notations that will be used to
describe our algorithms.

Let P, C 2V and P, C 2¥= be two partitions of V. and V, respectively. We define
the bipartite quotient graph G4 = (Pr, P., ) of A such that an edge (Z,J) belongs
to & C P, x P, if and only if there exists an edge in G between a node of Z and a
node of 7.

Let G% be the bipartite quotient graph used to represent the structure of the
reduced submatrix AF after k steps of elimination. Initially the bipartite quotient
graph G is initialized with the partitions P, = {{i} such that i € V,.} and P, =
{{j} such that j € V.}. Thus it is equivalent to the bipartite graph G'. At step
k of Gaussian elimination, any eliminated pivot e = (r¢,c.) will be referred to as
a coupled row and column element. All the row and column vertices that are
not coupled elements are referred to as the row and column variables of G%. Both
row and column vertices of the graph are thus partitioned into two sets composed
of variables (uneliminated vertices) and elements (eliminated vertices). We then
define Gk = (V¥ U VEVEUVY, 8 UE"). When it is clear from the context, we will
omit the superscript k. The vertices in V. (respectively V.) correspond to the row
(respectively column) variables. The vertices in V, (respectively V.) correspond to
the row (respectively column) elements. The edge set £ is such that £ C (V. x V,)
whereas & is such that £ C (V, x Vo) U (V, x V) U (V, x V,). With our definitions
(i,7) is a nonzero entry in the reduced matrix at step k if and only if there exists a
path joining ¢ and j which only visits the elements and for which all the edges in the
even positions correspond to already eliminated pivots. In other words, the structure
of a row i at step k is the set of reachable columns j through all the paths of the
form i = cey = Tey ... = Ce; = Te, — j Where e = (7e,,¢e,),1 <t < are coupled
elements. Similarly, the structure of a column j at step k is the set of reachable
rows 4 through all the paths of the form j — ro, = ¢e, ... = ¢, = ¢, — 4. This
process may involve paths of arbitrary length in GX [31] and in particular through
more than one coupled element. For example in Figure 3.1, we assume that the entry
(rp, Ce,) is initially zero and corresponds to fill-in due to the elimination of element
ei. Because of the path r, = ¢, — r.,, we know that the row structure of r,
contains the row structure of e; and in particular the entry (rp,c.,). We know also
that the row structure of r, contains the row structure of e; because of the path
Tp —* Cey —> Tey —* Cey —* Tey-

In the context of sparse Cholesky factorization, an undirected quotient graph
(the row and column vertices are merged) is preferred and commonly used to
compute an ordering for symmetric matrices (e.g., Multiple Minimum Degree [29] and
Approximate Minimum Degree [1]). The structure of the factors can be computed
following the paths of length at most two in this quotient graph. There are no edges
between the elements.

In the unsymmetric case, when a pivot p = (rp,¢p) is selected, if there exists a
cycle of the form r, = ¢, = re, ... = ¢y = Te, = ¢p —+ 1p then, except for 7,
and ¢;, the row and column elements in the cycle are no longer needed to retrieve the
structure of the remaining variables. This process will be called element absorption
and is illustrated in Figure 3.1. This absorption can be explained by the two following
remarks (see [31] for further details):

e the row and the column of p contain respectively the structures of the row
elements and of the column elements in the cycle,
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e if one of the elements is reachable from a variable ¢ then the other elements
in the cycle are also reachable from 4 (in particular p).
During the absorption, each path from ¢ to an element in the cycle is thus replaced
by an edge from ¢ to the current pivot.

F1G. 3.1. Illustration of a cycle (rp — Cey —> Te; —> Ceq —> Teg —> Cp —> Tp ).

To avoid long search paths when we compute the structure of the row and the
column of a pivot we decided to relax the element absorption rule as done in [5]. A
row (resp. column) element is absorbed by the current row (resp. column) pivot if
either it is adjacent to the column (resp. row) pivot or its associated column (resp.
row) element is adjacent to the row (resp. column) pivot. This is referred to as
local symmetrization in [5]. It implies that the resulting quotient graph GX at
step k models only an approximation of the structure of the reduced submatrix. It
has been shown in [5] that the exploitation of element absorption combined with
local symmetrization results in an in-place algorithm: at each step of the Gaussian
elimination, the size of the quotient graph is bounded by the size of G}. Note that
because of local symmetrization, an approximation of the symbolic factors can be
computed following the paths of length at most three of the form ¢ —» ¢, = r. = j
where (r¢,c.) denotes a coupled row and column element. Note that applying local
symmetrization is significantly different from symmetrization of the complete matrix.
In fact we add at most n — 1 virtual entries (at most one per absorbed element) and
thus the structure of the factors computed with local symmetrization is equal to the
real structure of the factors of a matrix A + D where D has less that n entries.

To simplify the description of how the bipartite quotient graph is modified at each
elimination step, we define V C (V, x V) to be the set of coupled row and column
elements corresponding to already eliminated pivots. Entries of the set V will also be
referred to as coupled elements or elements when it is clear from the context. Let
U, (resp. L,) be the column (resp. row) variables adjacent in G% to the row (resp.
column) element of a pivot p = (7, ¢p). Thanks to local symmetrization, the concept
of absorption can be extended to coupled elements: an element e = (re, c.) such that
(rp,ce) € € or (re,cp) € € can be absorbed by p when p is selected as a pivot. A
consequence of this absorption is that our ordering also generates a dependency graph
between elements that is in fact a forest. This forest will be fully exploited by the
unsymmetrized multifrontal approach [7].

For each row variable ¢ € V,. and column variable j € V., we define the element
lists R; and C; as follows:

Ri={e=(re,ce) € Vs.t. (i,c.) € E}
6



and
Cj ={e=(re,cc) € Vsit. (re,j) € E}.

Let e = (re, ce) be an element, if e € R; then we will say that element e is adjacent
to row variable i. Similarly, if e € C; we will say that element e is adjacent to
column j.

Using this notation, the adjacency of a row variable ¢ (resp. column j) in G4
consists of a list of column variables denoted as A;. ( resp. a list of row variables
A;) and a list of elements R; (resp. C;). Initially R; = C; = 0 and A;, and A,;
corresponds to the original entries of A. Each step of Gaussian elimination involves
changes in the sets R; and C; as well as the computation of the structure of a current
pivot p. The variable lists A;« and A,; can also be pruned. Indeed, the edges in
G4 between the variables and the elements implicitly represent the bi-clique of the
element and can thus be used to remove the redundant entries in A;, and A,;. This
important point will be further discussed in detail in Section 4.3.

When (rp, c,) € V, x V. is selected as the next pivot we build the element p such
that:

(3.1) U= AU |J teu | U
eER,, e€Cep

and

(3.2) Ly=Am,u |J Lou | Lo
e€Cep eER,

The third term in each equation results from local symmetrization and will enable
the current pivot to absorb all the elements which it was adjacent to. For example,
let us assume that the entry pl is selected as pivot in Figure 3.2. Since ¢, is adjacent
to e1, local symmetrization adds the virtual Sp; entry so that the row structure of pl
contains U, .

Let 7, = C., UR,;, be the set of elements adjacent to the current pivot. The
elements in F, are absorbed by p and the adjacency of each column variable j in U,
(resp. i in £,) is updated so that C; <— (C; \ Fp) U {p} (resp. R; + (R; \ Fp) U {p}).
The structure of column j of the factors in the reduced matrix is then given by
Ay U Ueecj L. The structure of row i of the factors is Aiu U U,ep, Ue-

Co1 G2
q
AN
e
AN
& ——
o912 X\ pl p2 =

Fic. 3.2. Influence of local symmetrization on the pivot structure
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Bipartite quotient graph of A: G4 = (V, UV,, Ve UV, E UE)
Ri elements adjacent to row
Aix  variables adjacent to row 4
C; elements adjacent to column j
A,;  variables adjacent to column j
Up row structure of pivot p after its elimination.
Ly column structure of the pivot p after its elimination.
Fp  elements that are adjacent to the row 7, or the column ¢, of a non eliminated
pivot p (F = Rr, UCcp)
F elements that are adjacent to row ¢ or column j where ¢ and j will be depend
on the context (F = R; UCy)
TABLE 4.1
Notations used for bipartite quotient graph.

Note that, although the above structural changes of the reduced submatrix
are correct, they should not be used to estimate the structure of the factors.
Indeed, if (i,j) were selected as the next pivot, then the correctly computed
structure of the reduced matrix should include the local symmetrization terms
(similar to equations (3.1) and (3.2)). In Figure 3.2, we illustrate the effect of local
symmetrization on the structure of the selected pivot. Let us consider two candidate
pivots belonging to the same row rp,, pl = (rp, ¢p1) and p2 = (rp, cp2). We assume that
all the elements in G4 adjacent to pl and p2 are indicated in the figure. The structure
of row 7, is then given by A, . UU,.,. This however does not give enough information
on the structure of row r, if either pl or p2 were selected as the next pivot. If pl were
the next pivot then the structure of row r, would be given by U, = Arp* UUey, UUe,
because of the locally symmetrized entry Sp;. If p2 were the next pivot then the
structure of row r, would be given by Ups = A, « UlUe, UU,, because of the locally
symmetrized entry Spo. This shows that, even if we cannot anticipate the effect of
local symmetrization on the quotient graph G4 before the pivot selection, we should
anticipate its effect on the metrics used to select the best pivot between pl and p2.

4. CMLS algorithm. In this section, we describe the main features and
properties of the CMLS algorithm. At each step of the algorithm, we need to know
the exact structure of each row and column in C. Moreover we need to compute a
metric that reflects the quality of each nonzero entry in C. It is thus natural to use
a bipartite graph (with possibly weighted edges) for C. Each edge corresponding to
a nonzero entry may have one or more weights that will be used to select a pivot.
For example, a numerical value that approximates the magnitude of the entries and
a structural metric that approximates the Markowitz cost (i.e., the product of the
row and column degree) can be used. On the other hand, in order to have a fast
computation of a structural metric based on the pattern of A and to have an in-
place algorithm, A is represented by its quotient graph and local symmetrization is
employed. The notations used to represent the quotient graph at each step of the
algorithm are summarized in Table 4.1.

In Section 4.1, we first describe the pivot selection algorithms. Updating the
graph G¢ and G4 associated with C and A respectively is discussed in Sections 4.2
and 4.3. In Section 4.4 we describe how to compute, at each step k and for each entry
in the constraint matrix C¥, structural metrics relative to G%. Section 4.5 finally
explains how supervariables are defined and used in our context.

4.1. Pivot selection. At each step, the best pivot according to a given metric
is selected. The metric choice determines the underlying algorithmic strategy. We say
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that we use structural strategies in our algorithms when the entries are selected
with respect to only information about the structure of the factors. In that case we
will say that we use a structural metric. When we combine a structural metric and
a numerical metric to select the pivot we will say that we use an hybrid strategy.

Moreover, in sparse matrix factorization, we also want to preserve the sparsity
of the factors while controlling the numerical growth in the factors. Numerical
thresholds are introduced to give freedom for the pivot selection to balance numerical
precision with sparsity preservation. An entry (i,j) € CF is said to be numerically
acceptable (or acceptable) according to a threshold 7 if and only if |¢;;| > 7 % ||e ;|0
where 7 € [0, 1]. To reduce the complexity of the algorithms, it is also common to limit
the pivot search to a set of candidate pivots. For example in [13] the authors proposed
to visit the entries of a fixed number of columns using the Zlatev-style search [37]. A
similar strategy is used in [34] to find a pivot set in the context of parallel sparse LU
factorization.

We use a slightly different algorithm: our pivot search is not restricted to columns
but to a more complex set of entries in order to achieve a better fill-in reduction. At
each step of the ordering, we look for the best entry p = (rp,cp) within a subset
(say S) of the entries in the bipartite graph G¢. The subset S is defined by two
threshold parameters MS > 0 and ncol > 0 as follows. Firstly, the MS entries with the
smallest structural metric mg are added to S. Secondly, those MS entries may belong to
several columns. We then add in S all the other nonzero entries of those columns, but
restricted to at most the first ncol columns. The set S is thus composed of a first set
of MS entries, the so-called MS-set, and a second set, the so-called ncol-set = S\ MS-set.

We now explain how we select the entry of minimum structural metric in S among
the numerically acceptable pivots. We first visit the MS-set sorted in increasing order of
the structural metric mg. The first numerically acceptable entry found corresponds to
the minimum with respect to our hybrid strategy and we stop the search. Otherwise,
none of the values in the MS-set entries is numerically acceptable. However, if ncol > 0
then we are sure that at least ncol entries will be numerically acceptable since 7 < 1.
Finally if ncol = 0 and none of the entries in the MS-set is numerically acceptable
then the first entry of the MS-set is selected even if it is not numerically acceptable.
(In our experiments MS = 100 and ncol = 10 are used.)

4.2. Update of the bipartite graph G¢. A bipartite graph is used to
represent C. At each step k, we need to add new entries in Ggr+1 corresponding to
the fill-ins in C**!. Since G¢ holds the set of candidate pivots, we need to guarantee
that Properties (2.1) and (2.2) hold.

Let M be a matching in C*. The following two extreme strategies preserve these
two properties:

e MATCH UPDATE will refer to the strategy that performs incomplete Gaussian
elimination on C to only preserve the perfect matching Property (2.1). Let
p = (rp,¢p) be the current pivot. Let (r,,match col) and (match_row,c,)
be the matched entries of C in row r, and column c,, respectively. That
is, (rp,match_col) € M and (match row,c,) € M. If these entries are the
same (i.e., (rp, ¢p) is a matched entry), nothing needs to be done to maintain
Property (2.1). Otherwise entry (match_row,match_col) is added to C and
M to maintain Property (2.1). Note that this entry corresponds to an entry
in Pattern(C*), so that Property (2.2) remains true.

e TOTAL_UPDATE will refer to the strategy which performs all the updates in
C (i.e., C¥! = CFk). Note that even if this strategy naturally preserves
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Property (2.2), our perfect matching on C**! may have to be updated as in
the MATCH_UPDATE strategy.
In practice, a mixed strategy, exploiting both MATCH_UPDATE and TOTAL_UPDATE will
be used for the experiments. (The decision is based on memory and cost estimations
of the algorithm.)

4.3. Update of the bipartite quotient graph G,4. In Algorithm 4.1 we
describe how the bipartite quotient graph associated with the reduced matrix is
updated.

Algorithm 4.1 CMLS update of the bipartite quotient graph G%

Let p = (rp, cp) be the current pivot at step k and Fp = R, UCc,-
if Uy #0 and L, #0 then
for each row ¢ € £, do

1 Aiv = (Aix \Up) \ {cp} /* variable elimination in row direction */
2 Ri=(Ri\ Fp)Up
end for
for each column j € U, do
3 Asj = (Asj \ Lp) \ {rp} /* variable elimination in column direction */
4 Cj=(Ci\Fp)Up
end for

else /* pivot pruning : delete all that is related to p, if U, = @ or L, =0 */
for each row ¢ € £, do
Ri = (Ri\ Fp)
Aiw = Ais \ {Cp}
end for
for each column j € U, do
¢ = ¢\ )
Ay = A \ {rp)
end for
end if

The “if” block of the Algorithm 4.1 shows how the elements and variables are
pruned. The element pruning performed at lines 2 and 4 includes pruning due to
local symmetrization. The variable pruning performed at lines 1 and 3 removes the
intersection of the adjacency structures. For each row ¢ in £, variables of A;, that
appear in U, are removed and we say that we perform variable elimination in
the row direction. For each column j in U, variables of A.; that appear in £,
are removed. This will be referred to as variable elimination in the column
direction. We then say that our algorithm performs variable elimination in one
direction. Note that if, at a given step, variables are removed from both row i and
column ¢, it means that ¢ € £, and 7 € Uj,. In Section 4.3.1, we will prove that under
additional assumptions more pruning of the variables could have been introduced. We
then however comment in Section 4.3.2 that doing so makes impossible the detection of
the reducibility as done in the “else” block of Algorithm 4.1. We will also explain why
it is correlated with the strategy used to prune variables. Note that this additional
pruning would have improved the accuracy of our structural metrics as explained in
Section 4.4.

4.3.1. Two-way variable elimination. Property 4.1 shows that under
additional assumptions the structure of the quotient graph can be further pruned.
PROPERTY 4.1. When local symmetrization is applied, and if at step k, the entry
at position (i,7) is the only entry in row i and column j of C* then:
10



(1) if i € Lp, all the variables belonging to L, can then be removed from A,;
(even though j ¢ U,),

(2) if j € Up, all the variables belonging to U, can then be removed from A
(even though i ¢ L, ). -

Proof. ;From equation (2.2), we have Pattern(C*+1) C Pattern(C¥). Therefore,
if at step k, (i,7) is the only entry in row i and column j of C¥, it will remain the only
entry in its row and column for all subsequent C!, for I > k. Thus (i, j) will be selected
as a pivot in a future step, and we can anticipate where local symmetrization will
occur. So the entries in A,;NL, for Property 4.1(1) (or in AN, for Property 4.1(2))
can be pruned and will be retrieved from £, (or Up) when (i, j) is eliminated. O

When we apply Property 4.1, we say that the algorithm performs elimination in
both row and column directions. This process will be referred to as two-way variable
elimination. For example when the pivot choice is limited to a transversal, the two-
way variable elimination can be performed at each step of the elimination, as in the
DMLS algorithm [5]. This is illustrated in Figure 4.1(a). We assume, for the sake of
clarity, that the input matrix has been permuted to have all the candidate pivots on
the diagonal. The shaded areas correspond to the variables that can be removed from
the variable adjacency lists because they are implicitly stored through the adjacency
lists of element p.

j 0 x X [ —

H H\ H\/ @

(a) Ilustration of two-way variable elimination. (b) Effect of variable elimination in both
directions on reducibility detection (S indicates
the position of local symmetrization).

Fi1c. 4.1. Variable elimination and reducibility detection.

If the hypothesis of Property 4.1 is not true, the two-way variable elimination
cannot be applied because we do not know whether local symmetrization will be
performed or not. Let us consider Figure 4.1(a) again. If all three entries (,%), (4, J)
and (4,7) belong to C, then we cannot prune all the shaded areas. This is because
both (i,4) and (j,¢) are potential pivots from column i. If (7,7) were chosen as the
pivot from column %, then the shaded area in column ¢ could have been pruned during
the elimination of p thanks to local symmetrization relative to entry ¢ in column L.
However, if (j,i) were selected as the pivot from column 4, then since j ¢ £, and
i ¢ Up, the element p would not be used to build the row and column adjacency
of (4,7). In this case the shaded area in column 4 should not be pruned during the
elimination of p since it would be impossible to retrieve those variables. Note that
the shaded area in column j can be pruned, because the entry (p,j) is not a locally
symmetrized entry, and so the variable elimination in the column direction can be
applied.
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4.3.2. Reducibility detection. If the input matrix is reducible, we may
encounter a pivot p such that either (1) both £, =  and U, = @ (referred to as
strongly reducible) or (2) £, = 0 or U, = 0 (referred to as weakly reducible).
Ideally, we would like to remove p from the quotient graph G4 in both reducible cases.
(In our context removing a pivot from G4 means that both the pivot and its adjacency
structure can be suppressed without any further update of the graph.) However, we
will show that whether p can be removed or not depends on whether we use only
one-way variable elimination or use two-way variable elimination as well.

PROPERTY 4.2. If the variable elimination is always done in one direction, then
the current pivot p can be removed from the quotient graph if it is weakly reducible.

Property 4.2 comes from the fact that the pruning of the structures due to local
symmetrization has not been anticipated. Thus, none of the entries in £, (if U, = ()
or U, (if £, = @) will be needed by the other variables to represent their adjacency
structure in G4. Therefore, pivot p can be removed from G4.

PROPERTY 4.3. If the two-way variable elimination has been done at least once,
then the current pivot p can be safely removed from the quotient graph if and only if
it is strongly reducible.

Proof. Firstly, when U, = ) and £, = 0, p becomes a singleton element and
can certainly be removed from the quotient graph. Secondly, let us suppose that
two-way variable elimination has been performed at least once. We now build a
counter example to show that we cannot safely (in all possible cases) remove a weakly
reducible pivot p. Let us assume without loss of generality that ¢, = 0 and £, # 0.
Let us assume that there exists a variable i € £, and that there is an entry (s, )
that is the only entry in row ¢ and column j in C. We also assume that variables
in A,; have been pruned under two-way variable elimination. Therefore, p must be
used to retrieve those entries and cannot be removed from G4. This is illustrated in
Figure 4.1(b) where the shaded area (1) in column j is first stored through element e
then stored through element p (after pivot p absorbs element e). O

Property 4.3 indicates a drawback of the two-way variable elimination: we can
only prune the pivot in the strongly reducible case. The algorithm may be very
inefficient if the matrix is very reducible in the weak sense.

When the matrix is reducible to block triangular form (BTF), the reducibility
detection may have a significant impact on the ordering quality [15]. In that case many
instances in which an element is strongly or weakly reducible can appear. Property 4.2
can then be used to show that thanks to one-way variable elimination CMLS will better
detect and exploit the BTF form of a matrix (see [6, 32] for further details).

4.4. Update of the structural metric. In this section, we describe heuristics
to estimate the structural quality of a pivot.

In the preamble section, we first describe how we approximate the row and column
degree. In Section 4.4.2, we describe a metric based on an upper bound on the fill-ins
introduced at each step of elimination. This approximation of the fill-ins has been
studied by the authors of AMD [1] for symmetric matrices. We provide a generalization
of this approximation to unsymmetric matrices and prove that it is a tighter upper
bound on the fill-ins than the approximations proposed for symmetric matrices in
[33]. Note that concerning the deficiency approximation in [30], there is no guarantee
that it is an upper bound of the fill-in. Our approximate minimum fill-in heuristic
will be referred to as AMFI.

4.4.1. Preamble. Let us assume that the k'* pivot p = (r,,c,) has been
selected. All the entries in (£, x Vo U V. x U,) N Pattern(C) are involved in the
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structural metric updates. The size of this area is thus larger than the area involved
in the update of the structure of C. The algorithm to update the structural metrics
is one of the most costly steps of our algorithm.

We want the metrics to reflect the structural quality of an entry if it were selected
as the next pivot. That is why we compute metrics which are related to the structure
of our quotient graph and for which local symmetrization is anticipated. In the
following, the degrees, approximate degrees, fill-ins and approximate fill-ins are all
related to this quotient graph structure.

Let d,(i,j) and d.(i,j) denote respectively the external row and the external
column degrees of entry (i,j). Similarly to AMD [1] and DMLS [5] algorithms,
approximate row and column external degrees are computed. The AMD-like
approximate external row and columns degree, amd..(¢,j) > d.(i,j) and amd.(i, ) >
d.(i,j) respectively, are then defined by the following two equations:

amdy(i, j) = |[Au \Up| + [Up \ j| + Zeeniucj(|ue \Up|) — a;,

(4.1) with o = max(|C;|, 1) if j ¢ U, else a; = 0.

amde(i, ) = A\ Lp| + 1L, \i| + Zeecjun,-( Le\ Lyp]) — Bi
with 8; = max(|R;|,1) if i ¢ £, else §; = 0.

(4.2)

As was done in [5], degree corrections (a; and f; in equations (4.1) and (4.2)) are
introduced to improve the approximations of the row and column external degrees
in the presence of local symmetrization. To justify these correction terms, one can
observe that if j ¢ U, then j is counted in every U, \ U, for e that is adjacent to
column j (e € C;). Furthermore, if C; is empty and j ¢ U, then column j has been
counted in A;, \ U, and should then be subtracted. This explains the use of ; in the
correction. f3; can be justified in a similar way. The |U, \ U,| and |L. \ £,| quantities
are computed similarly in the AMD algorithm.

Note that since only one-way variable elimination is employed, the computation
of the metric is less accurate than with two-way variable elimination. This is because
in the latter case, for any element e, row index ¢ € U, and column index j € £,, we
have A;, NU, = 0 and A,; N L. = . This is no longer true when one-way variable
elimination is used (see Algorithm 4.1). But as was explained in Section 4.3, the
benefit of one-way variable elimination is to better exploit the BTF of the matrix.

After eliminating the k** pivot, we approximate the row and column degree by

(4.3) amd,.(i,7) = min(amd,(i,j),n — k — 1),
and
(4.4) amd.(i,7) = min(amd.(i,j),n — k — 1).

Note that these approximations do not use the values of the previous approximate
row and column degrees because it would be costly to store these quantities for each
entry in C.

4.4.2. Approximation of the fill-in. We want to estimate the amount of new
fill-in that would occur in the reduced matrix if an entry were selected as the next
pivot. A coarse upper bound of the fill-in that would occur can be obtained by
removing the area corresponding to £, x U, from the Markowitz cost or the area
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corresponding to the largest adjacent clique [33]. A tighter approximation of the fill-
in in the factors can be obtained by removing all the areas already filled during the
elimination of the previous elements.

Suppose that ¢ € £, or j € Up. Let F = R; UC;. Let e be an element that
belongs to F.  Let S(i,7) denote the union of the areas associated with all the
elements adjacent to entry (i, j):

S(iyg) = | J (Le \{i}) x Ue \ (G \ (Lp x Up)-

ecF

Ideally one might want to subtract both | (£, \ {i}) x U, \ {j}) | and S(4, ) from
the Markowitz cost d-(i,j) x d.(é, 7). An upper bound of the fill-in that would occur
(including local symmetrization) if an entry (i, ) were eliminated is:

dr (i, §)de(i, §) — [ Up \ {5}) | | (£p \ {i}) | = S, 5).

The authors of [33] have observed that instead of using the exact external degrees
one could use the approximate (in the sense of the AMD algorithm) external degrees
since both produce results of comparable quality and since AMD based metrics are
significantly faster to compute. In this context, the corresponding upper bound of the
fill-in metric becomes

(4.5) amd, (i, j)amd, (i, j) — | Up \ {7}) | | (£p \{i}) | = S(5)-
Let AS be an overestimation of area S,
(4.6) AS(i,5) = Y | (Le \{i}) x Ue \ {71\ (Lp x Up)|-
eeF

Property 4.4 proves that one can in fact subtract area AS(4,7), instead of S(,j) to
obtain a more accurate upper bound of the fill metric than expression (4.5).

PROPERTY 4.4. amd,(i,j)amd.(i,5) — | Up \ {4}) | | (Lp\{i}) | — AS(¢,7)
is an upper bound of the fill-in that would occur in the quotient graph if (i,j) were
eliminated.

An intuitive proof of Property 4.4 is that, during the computation of the
approximate degree, the submatrix is expanded in such a way that the intersections
between all (U \ Up \ {j}) and between all (L. \ £, \ {i}) for e € F are empty. The
area AS corresponds to a real surface in the expanded matrix and can be removed
from the area amd,(i,j)amd.(i,j) to compute the fill-in that would occur in the
expanded matrix. Moreover, this fill-in in the expanded matrix is an upper bound of
the exact fill-in in the quotient graph. A formal proof of Property 4.4 is given in [32].

In practice we use amd,(i,j) and amd.(i,j) as defined in equations (4.3)
and (4.4) instead of amd,(i,7) and amd.(i,j). Because of that it may happen that
amd,.(i, j)amd,(i, j) — |Up \ j||£p \ 3| — AS(i, j) becomes negative, meaning that either
amd,(i,7) < amd,(i,j) or amd.(i,j) < amd,(i, 7). In such cases, as it is done in AMD
and DMLS, one can artificially set the metric to 0. We propose here an alternative,
that could also be applied to these approaches to limit the tie-breaking. We introduce
row and column scaling terms

amdy (i, )~ [Up \3| | amdy(ing) = |£ \i]
amndy (i, ) =ty \ J1 amde(i-) = |£, \ ]
14
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If one systematically scales the area AS by rowscale x colscale, then we ensure a
positive metric and avoid tie-breaking problems due to metrics equal to 0. Our final
AMFI metric is then defined as follows:

amdr(iaj)amdc(iaj) - |u17 \JH‘CP \ll
— rowscale X colscale X AS(%,j)
4.7)  metric®*+Y (i, j) = min metric® (i, ) +|U, \ 5] x amd,(i,7)
+|L, \ | x amd.(i, j)
=2 [Up \ j| x [Lp \ 4]

4.5. Supervariables and mass elimination. For the sake of clarity, the
algorithms described in the previous section did not include supervariables. In this
section, we first define our generalization of supervariables and mass elimination
to bipartite quotient graphs with off-diagonal pivots. We then revisit the previous
algorithms and explain what has to be modified to detect and exploit supervariables.

In our context, we want supervariables to exploit identical adjacency structures
in the graph at each step of the elimination. Supervariables are thus defined on
the bipartite quotient graph of A, whereas on the bipartite graph of C we only use
simple variables. With the CMLS algorithm we cannot use exactly the same kinds
of supervariables as in [1, 5, 19, 23] because they assume that pivots are on the
diagonal so that a row can be associated with a column before being selected as pivot.
That is why our concept of supervariable is closer to the one used in [22]: we define
indistinguishable row variables (resp. indistinguishable column variables)
as row variables (resp. columns variables) which have the same adjacency in G4. To
limit the cost of supervariable detection, two hash functions (see for example [9]) are
then used for each row and column direction.

If i and j are two indistinguishable row variables, they are replaced in G4 by a row
supervariable containing both 7 and j, labeled by its principal row variable (i,
say) [18, 19, 20]. The notation i is used to denote this row supervariable and i = {3, j}.
i and j are said to be constituent row variables of the row supervariable i and the
notations ¢ € i and j € i are then used. At the beginning of Gaussian elimination,
the row variables are said to be simple row variables. Each simple row variable
i can also be seen as a row supervariable i = {i}. For each row supervariable i, [i|
corresponds to its size, i.e. its number of constituent variables. Similar definitions and
notation can be introduced for the column supervariables, the principal column
variables, the constituent column variables and the simple column variables.
When it is clear from the context, we do not differentiate between a column or a row
supervariable. Furthermore, let r; and o be two row variables which belong to the
same row supervariable r and ¢; and ¢z be two column variables which belong to the
same column supervariable c. After the elimination of pivot p; = (r1,¢1), p2 = (r2,¢2)
can be eliminated in G4 without causing extra fill-in. This process, commonly referred
to as mass elimination [25], creates a new (super)element e = (r., c.) in the quotient
graph with r, = {ry,m} and ¢, = {c1,c2}. In the following, we comment on the
algorithmic modifications due to the introduction of supervariables.

Let p be the current pivot. The first modification of the algorithm concerns the
introduction of a scaling of the structural metric as defined by equation (4.7). The
structural metric of an entry (i, j) adjacent to p either in the row or column direction
is divided by min(]i|,|j|). Indeed min(|i,|j|) corresponds to the size of the largest
pivot block which could be eliminated if a pivot at the intersection of these row and
column supervariables were selected.
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The second modification of the algorithm concerns the elimination process which
is performed in the following three main steps. During the first step, the scaled metric
is used to select a pivot in C. During the second step, we retrieve its associated row
rp, and column c, supervariable in A. During the third step, we eliminate “as many
as possible” variables belonging to (r, x ¢;) N C. Note that the meaning of “as
many as possible” will depend on the context. If a hybrid strategy is used then pivot
entries might be rejected because of numerical criteria. Furthermore, since the C
matrix is updated when eliminating a pivot, the new nonzero entries that might be at
the intersection of the pattern of C and the supervariables need also be considered.
The same modified three steps are also applied when mass elimination process of
supervariables adjacent to the current pivot is involved. Finally, if some constituent
variables of a supervariable have not been eliminated, then they are used to build a
new supervariable and are re-inserted in G4.

The final modification concerns the update of the structural metric. After the
elimination of a pivot p, the approximate external row and column degrees as defined
by equations (4.1) and (4.2) become:

amdy (i, ) = | Ase \Up| + [Up \ {T} + Xcmyue; (Ue \ Up|) — 5 i,

(48) with a; = max(|C;|,1) if j ¢ U, else a5 = 0.

(4.9) amde(i,7) = A \ Lpl + [£p \ L} + Docer,ue; (1€e \ Lpl) = B i,
with 8; = max(|R;|,1) if i ¢ £, else §; = 0.

5. Experiments. In this section we analyze the effect of the CMLS ordering
on the performance of sparse solvers. Our new ordering will be compared to the
combination of DMLS ordering and MC64 [16, 17] because it is the most robust in-
place local heuristic (better than the combination of AMD and MC64, see [5]) in
terms of numerical stability and fill-in reduction in the factors. DMLS takes into
account the asymmetry of the matrices, selects pivots on the diagonal, applies local
symmetrization and two-way variable elimination. Thus it can be considered a
restricted CMLS. We recall that MC64 permutes the matrix such that the product of
the diagonal elements is maximized.

With the CMLS ordering, our pivot sequence results from a combination of
structural and numerical information (even when only structural metrics are used
to select the pivots, the initialization of our constraint matrix is based on numerical
considerations). Therefore it is important to analyze the numerical quality of the
proposed sequence of pivots. In this context, for very different motivations, we may
want to experiment with both an approach that performs partial pivoting to preserve
numerical stability and an approach based on static pivoting. In the first case, the
numerical quality of the proposed sequence of pivots is not so critical to obtaining
a backward stable factorization and we expect to improve the sparsity of the factors
because of the freedom to select entries in the constraint matrix C. In the case of
a static pivoting, we expect that the capacity of CMLS to select pivots according to
numerical criteria can be used to better control the numerical quality of the sequence
while still offering more freedom than a diagonal Markowitz algorithm. In fact with
the CMLS algorithm we can define a family of orderings and expect that two probably
different members of this family can be used in these two cases: a CMLS ordering in
which C offers a lot of freedom to choose the pivots and a CMLS ordering in which the
selection of the pivots is strongly guided by the numerical values in C.
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To represent each class of solver techniques, we consider the multifrontal code
MA41_UNS [2, 7] which performs numerical pivoting during the factorization and the
supernodal code SuperLUDIST [28] which performs static pivoting. Both codes are
run in sequential mode. As shown in [4, 7, 12, 26] the approaches used to factorize the
matrix in MA41_UNS and SuperLU.DIST are very competitive in shared/sequential and
distributed memory environments respectively. Note that because of the important
algorithmic similarities between MA41_UNS and the distributed memory code MUMPS [3],
this work will be also very beneficial to the distributed memory multifrontal code.

In Section 5.1, we present our experimental environment. In Section 5.2, we
discuss the case where the pivot choice in CMLS is restricted to the matching provided
by MC64. In Section 5.3, we analyze the behavior of our ordering when a structural
strategy is used to select the pivots. We report performance obtained with MA41 _UNS in
terms of time and memory used during factorization. In Section 5.4, we illustrate the
benefits resulting from the use of hybrid strategies for pivot selection in SuperLU_DIST
and focus on the numerical effects.

5.1. Experimental environment.

5.1.1. Test matrices and computing environment. Consider a matrix A =
(a;j) and let nnz(A) be its number of nonzero entries. We define the structural
symmetry s(A) as:

_ {(,j) st. a;; #0 and ay; # 0}
s(A) = n]nz(A) ’ '

If A is symmetric,then s(A) = 1, and if A is strictly triangular, then s(A) = 0. In
the remainder of this section, the symmetry of a matrix always refers to the structural
symmetry after the MC64 permutation has been applied (see column sym of Table 5.1).

A representative set of 19 large unsymmetric matrices has been selected from
Tim Davis’ collection [11], see Table 5.1. Only matrices with a structural symmetry
lower than 0.5 and of order greater than 10000 were chosen. Moreover, we limited
the number of similar matrices from the same family to two in order to avoid
the class effects. We also added to our test set four matrices (mixtank, invextrl,
fidapm11 and cavity16) from the PARASOL test data' and Matrix Market?, because
we have observed that for these matrices SuperLUDIST needs iterative refinement
to improve the accuracy of the solution [4]. These four matrices will be used in
Section 5.4 to illustrate that using the CMLS ordering improves the numerical behavior
of SuperLUDIST.

All our results have been obtained on a Linux PC computer (Pentium 4, 2.8 GHz,
2 GBytes of memory and 1 MByte of cache). We use the Portland Fortran 90 compiler
pgf90, C compiler gcc (both with -O3 option) and ATLAS BLAS [35, 36].

We systematically apply random row and column permutations to our initial
matrix so that the ordering algorithms are less sensitive to the effects of tie-breaking.
We ran each problem with eleven random permutations and selected the run whose
ordering returns the median fill-in in the factors. We did not observe large variations
of the amount of fill-in in the factors from these random permutations except for
matrix bbmat. (In general variations are smaller than 10%.)

Lhttp://www.parallab.uib.no/projects/parasol/data
2http://math.nist.gov/MatrixMarket
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Group/Matrix n nnz | sym |description

Vavasis/av41092 410921683902 | 0.08 | Unstructured finite element
Hollinger/g7jac200sc 59310 | 837936 | 0.10 | Economic model
Hollinger/g7jac180sc 53370 | 747276 | 0.10 | Economic model

Hollinger/jan99jac120sc | 41374 | 260202 | 0.16 | Economic model
Hollinger/jan99jac100sc | 34454 | 215862 | 0.16 | Economic model
Mallya/lhr34c 35152 | 764014 | 0.19 |Light hydrocarbon recovery
Mallya/lhr71c 70304 | 1528092 | 0.20 | Light hydrocarbon recovery
Hollinger/mark3jac120sc | 54929 | 342475| 0.21 | Economic model
Hollinger/mark3jac140sc | 64089 | 399735| 0.21 | Economic model

Grund/bayer01 57735 | 277774 | 0.25 | Chemical process simulation

Hohn/sinc18 16428 | 973826 | 0.27 | Single-material crack problem (sinc-basis)

Hohn/sincl5 11532 | 568526 | 0.27 | Single-material crack problem (sinc-basis)

Zhao/Zhao2 33861 | 166453 | 0.27 | Electromagnetism

Sandia/mult_dcop_03 25187 | 193216 | 0.36 | Circuit simulation

ATandT/twotone 120750 | 1224224 | 0.42 | Harmonic balance method

ATandT/onetonel 36057 | 341088 | 0.42 | Harmonic balance method

Norris/torsol 116158 | 8516500 | 0.43 | Finite element matrices from bioengineering

Simon/bbmat 38744 | 1771722 | 0.49 | 2D airfoil, turbulence

Shen/shermanACb 18510 | 145149 | 0.50 | Matrices from Kai Shen

mixtank 29957 | 1995041 | 0.91 | fluid flow (PARASOL, Polyflow S.A.)

invextrl 30412{1793881 | 0.85 |fluid flow (PARASOL, Polyflow S.A.)

fidapm11 22294 | 623554 | 0.45 | CFD (SPARSKIT2 collection)

cavity16 4562 | 138187 | 0.84 |Finite element modeling (SPARSKIT2 collection)
TABLE 5.1

Test matrices.

5.1.2. CMLS and DMLS testing environment. The initialization of C is
done using a scaled matrix and the maximum weighted matching returned by MC64.
To limit the size of C and the complexity (cost and memory) of the ordering phase,
the initial number of entries in CO is set between n and 4n (computation based on
a function that depends on both n and nnz(A)). We then drop the entries that are
smaller than 0.1 in magnitude and the entries whose structural metrics are too large.
While dropping, we still maintain the nonsingularity property (2.1). In our test set,
we observed that the size of C° is between n and 3n after this last dropping phase.

We use the metric AMFI of Section 4.4.2 since it is the most efficient metric for
both CMLS and DMLS orderings. In the CMLS implementation, we use rowscale and
colscale coefficients (see end of Section 4.4.2) to reduce the amount of tie-breaking
between variables that would have a negative metric (reset to 0) with DMLS. This
algorithmic modification has also been implemented in the DMLS code to simplify our
discussions in this section.

5.2. Preliminary remarks about diagonal constraint matrix. When C°
contains only the entries from the MC64 matching and thus the set of candidate pivots
for CMLS and DMLS is identical, one should expect a comparable behavior of the two
algorithms in terms of fill-in in the factors. However, we have noticed that CMLS
ordering tends to produce sparser factors (see [32] for detailed results) even if DMLS
uses two-way variable elimination which leads to more accurate structural metrics,
as explained in Section 4.4.1. This can be explained by the following algorithmic
differences:

e Thanks to the one-way variable elimination, CMLS can eliminate all the
elements in both the strongly reducible and the weakly reducible situations.
This is well illustrated by the mult_dcop_3 matrix, which has 7448 irreducible
components. DMLS and CMLS detect 875 singletons during a common
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preprocessing step. Then during ordering, DMLS detects 95 additional blocks
versus 229 blocks for CMLS.

e CMLS can create a row (column) supervariable if two rows (columns) have
the same structure. DMLS can create a supervariable only if both rows and
columns have the same structure. Thus, on the same quotient graph CMLS
will detect more supervariables than DMLS. Note that the use of supervariables
improves the accuracy of the structural metric. For example, if we consider
that variables 7 and j belong to the same row supervariable, then the entries
in A;x and Aj. will not be counted as fill-in.

We should stress that these algorithmic differences were justified because CMLS is
designed to handle more general and complex situations than DMLS. What was not at
all predicted is that even a DMLS like algorithm—pivot choice limited to the diagonal—
could benefit from the more general framework of the CMLS ordering.

5.3. Structural strategy.

5.3.1. Structure of the factors. In this section, we analyze the effect of the
ordering on the size of the factors and compare the predicted size and the actual size
of the factors. When there are no off-diagonal pivoting and node amalgamation, the
actual size would be the same as the predicted size.

Table 5.2 compares CMLS with DMLS for both the estimated and the real size of the
factors, using the MA41 _UNS solver. For most matrices, the CMLS ordering results in
sparser factors. The gains in sparsity vary from —22% to 56%, with gains very much
comparable for both the estimated and the real size of the factors. On all matrices
CMLS is either comparable or significantly better than DMLS except for lhr34c and
lhr71c for which DMLS performs better. For the two matrices CMLS performs a lot of
mass eliminations (approximatively 25% of the variables are eliminated during mass
elimination). Instead of dividing our minimum fill-in estimation by the minimum of
the sizes of the column and row supervariable, one could anticipate the number of
mass eliminations and divide the AMFI estimation by the maximum of the sizes of the
column and row supervariable. With this modification, we observed similar results in
terms of fill-in between CMLS and DMLS for these two matrices.

As expected, the fact that more flexibility has been offered to select off-diagonal
pivots in the constraint matrix helps CMLS to preserve the sparsity of the factors.
However, in doing so we have allowed CMLS to select pivots that do not belong to the
maximum weighted matching. Since a structural metric is then used by CMLS to select
pivots, it is thus critical to evaluate the numerical quality of this pivot sequence with
MA41_UNS. We recall that, thanks to partial threshold pivoting, the factorization phase
of MA41 UNS (the default value of the threshold is used in all experiments) will modify
the pivot sequence to control the growth of the size of the factors. This may result
in an increase in the estimated factor size and number of operations. We thus also
provide in Table 5.2 the ratio between the number of nonzeros in the factors and the
forecast number of nonzeros in the factors. Note that from a software point of view it
is also critical for the estimation to reflect reality. Clearly an accurate estimation is
important for algorithms that are implemented without dynamic memory allocation.
Even for C, C++ or FORTRAN90 based implementations that allow dynamic memory
allocations, their cost may be not negligible. Finally, the accuracy of the memory
estimation is even more critical in a distributed memory environment. For example,
the buffers used for communications need to be well estimated. We see in Table 5.2
that the increase in the size of the factors is reasonable.
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Estimated size of factors Real size of factors | Ratio: actual/predicted
Matrix CMLS std DMLS std CMLS DMLS CMLS DMLS
av41092 6609 0.01 9323  0.02 6849 9553 1.03 1.02
g7jac200sc 27912  0.06 30424  0.02 28282 30443 1.01 1.00
g7jac180sc 24755  0.04 26789  0.03 25077 26810 1.01 1.00
jan99jac120sc 3191  0.02 4326  0.03 3197 4330 1.00 1.00
jan99jac100sc 2651  0.02 3373 0.03 2656 3376 1.00 1.00
lhr34c 4264  0.05 3571 0.03 4405 3668 1.03 1.02
lhr7lc 9142  0.02 7189  0.02 9557 377 1.04 1.02
mark3jac120sc 13333 0.02 12963  0.04 13386 12998 1.00 1.00
mark3jac140sc 15380  0.02 15093 0.01 15453 15136 1.00 1.00
bayer01 1253  0.03 2220 0.04 1253 2220 1.00 1.00
sinc18 26505  0.05 31722 0.04 27427 31926 1.03 1.00
sincld 12596  0.03 15367  0.04 12917 15455 1.02 1.00
Zhao2 12258 0.01 14069  0.02 12588 14434 1.02 1.02
mult_dcop_03 713 0.01 940  0.07 714 906 1.00 0.96
twotone 7552 0.01 8458  0.02 7552 8458 1.00 1.00
onetonel 2913 0.02 3204 0.02 2921 3204 1.00 1.00
torsol 30656  0.02 34200 0.01 30656 34326 1.00 1.00
bbmat 38088 0.10 46436  0.14 38888 46471 1.02 1.00
shermanACb 362  0.01 426  0.01 362 426 1.00 1.00
Mean/Median 0.88/0.87 0.89/0.87
TABLE 5.2

MA41_UNS size of the factors and analysis reliability. Fach number for the factor size is in
thousands. std: standard deviation over the eleven runs. Mean (resp. Median) : mean (resp.
median) value of the ratio CMLS statistic / DMLS statistic.

5.3.2. Run-time and memory usage. In this section, we examine the number
of operations, run-time and memory usage of MA41 UNS. The extra cost due to
numerical pivoting during factorization is always included in the number of operations.
Note that the timings for the factorization and the solution phase have to be
interpreted carefully because they strongly depend on the basic linear algebra kernels
used.

We see in Table 5.3 that on almost all the matrices, the CMLS ordering reduces
the amount of memory used, with an average reduction around 11%. The reduction
in the number of operations is even larger (median value of 20%) and will contribute
to the reduction in the factorization time.

Table 5.4 then compares the time of the three main steps of the solution process.
Note that the ordering time of both orderings depends on two opposite effects that
are difficult to assess. The better we preserve sparsity, the smaller might be the
quotient graph, and the faster we can process it. On the other hand, the better we
preserve sparsity, the fewer the elements are absorbed, the fewer the supervariables
are detected, and the higher the complexity might be. However, our new ordering is
a real unsymmetric ordering that selects off-diagonal pivots and updates a constraint
matrix. One should thus expect the time spent in the ordering to be higher with
CMLS than with DMLS. Indeed, CMLS performs more metric computations and has to
explicitly store and manipulate the constraint matrix C. The metric update is the
most costly step of the ordering so that the complexity of the ordering is tightly linked
to the size of C. Considering that the size of C° is typically between 2n and 3n, we
see in Table 5.4 that CMLS is quite competitive with respect to DMLS (we observe that
the cost of CMLS does not linearly increase with the size of C%). Two algorithmic
differences might explain the good behaviour of the CMLS ordering (see for example
torsol matrix):
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Memory needed Number of operations
Matrix CMLS DMLS ratio CMLS DMLS ratio
av41092 7104 9998 0.71 1760 3533 0.49
g7jac200sc 29082 32912 0.88 27717 32553 0.85
g7jac180sc 26500 27566 0.96 24272 28190 0.86
jan99jac120sc 3245 4615 0.70 1042 1691 0.61
jan99jac100sc 2711 3579 0.69 867 1196 0.72
Ihr34c 4501 3684 1.22 731 422 1.73
lhr71c 9786 7465 1.31 1949 852 2.28
mark3jacl120sc 13909 13511 1.02 7524 6465 1.16
mark3jac140sc 15937 15963 1.00 8592 7558 1.13
bayer01 1256 2231 0.56 41 140 0.29
sincl8 32375 35409 0.91 49281 60152 0.81
sinclb 15031 16885 0.93 16515 19376 0.85
Zhao2 13200 15492 0.85 7622 9655 0.78
mult_dcop-03 746 969 0.76 51 117 0.43
twotone 8038 9006 0.89 4791 5412 0.88
onetonel 3437 3652 0.94 1035 1284 0.80
torsol 33759 36761 0.91 24620 36523 0.67
bbmat 39303 47156 0.83 31576 54061 0.58
shermanACb 394 452 0.87 20 30 0.66
Mean/Median 0.89/0.89 0.87/0.80
TABLE 5.3

MA41_UNS memory used (in thousands of reals) and number of operations (in millions). ratio
: ratio of CMLS statistic / DMLS statistic. Mean (resp. Median) : mean (resp. median) of the ratio
CMLS statistic / DMLS statistic.

e Since CMLS has the flexibility to select pivots in the constraint matrix it may
not be critical to know the metric of the entries that belong to a fairly dense
row or column. That is why our CMLS implementation can easily avoid metric
updates of such entries in the C matrix.

e Furthermore, supervariables have been generalized in our context resulting
in separated row and column supervariables. This feature helps CMLS exploit
the unsymmetric structure of the matrix in a more efficient way.

We then see in Table 5.3 that the decrease in fill-in and in the number of operations
performed during the factorization phase leads to a decrease in the factorization time.
The reductions in factorization time are slightly smaller than those in the number of
operations (the average reduction in the number of operations is around 20%). This is
because sparser factors often lead to smaller full blocks for which basic linear algebra
kernels are slower. We observed that the flop rate of MA41 _UNS tends to be smaller
with CMLS than with DMLS: the average flop rate is nearly 1.02 GFlops with the DMLS
ordering whereas it is around 0.99 GFlops with the CMLS ordering.

5.4. Impact of the hybrid strategies on SuperLUDIST. We now study
the numerical behaviour of SuperLUDIST using CMLS ordering. Because of the
static pivoting strategy used during factorization, SuperLUDIST is expected to be
numerically more sensitive than MA41_UNS to the use of hybrid strategies in pivot
selection, and iterative refinement may be required to obtain an accurate solution,
as was observed in [4]. We thus analyze the component-wise backward error of the
solution [8] during iterative refinement. Note that one step of iterative refinement
costs at least as much as one forward and backward substitution. The cost of the
solution phase is closely related to the number of steps of iterative refinement. In the
hybrid strategy (see Section 4.1), a relative threshold is set to avoid the selection of
small pivots in C. This was chosen to be 0.01 in all our experiments.
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ordering time factorization time solution time
Matrix CMLS DMLS ratio CMLS DMLS ratio CMLS DMLS ratio
av41092 3.38 2.72 1.24 1.95 2.98 0.65 0.042 | 0.051 0.82
g7jac200sc 27.13 9.96 2.72 23.37 | 25.63 0.91 0.125 | 0.135 0.92
g7jacl80sc 24.34 8.11 3.00 22.15 | 24.04 0.92 0.113 | 0.119 0.94
Jjan99jac120sc 5.29 3.01 1.75 1.48 2.04 0.72 0.037 | 0.043 0.86
jan99jac100sc 4.16 2.03 2.04 1.14 1.83 0.62 0.028 | 0.031 0.90
lhr34c 5.01 2.27 2.20 1.22 0.95 1.28 0.041 | 0.037 1.10
lhr7lc 11.19 5.13 2.18 3.16 2.33 1.35 0.096 | 0.084 1.14
mark3jac120sc 8.26 3.59 2.30 5.88 4.90 1.20 0.069 | 0.070 0.98
mark3jac140sc 9.84 4.18 2.35 6.77 5.85 1.15 0.083 | 0.081 1.02
bayer01 1.66 1.19 1.39 0.36 0.49 0.73 0.037 | 0.039 0.94
sinc18 25.63 | 12.66 2.02 33.72 | 32.10 1.05 0.079 | 0.077 1.02
sincl5 10.89 4.60 2.36 10.98 | 10.79 1.01 0.040 | 0.040 1.00
Zhao2 2.22 0.93 2.38 5.67 6.97 0.81 0.052 | 0.053 0.98
mult_dcop-03 0.86 0.42 2.04 0.22 0.25 0.88 0.014 | 0.013 1.07
twotone 3.59 2.28 1.57 6.05 7.06 0.85 0.094 | 0.109 0.86
onetonel 1.52 0.50 3.04 1.25 1.70 0.73 0.026 | 0.030 0.86
torsol 14.49 | 70.20 0.20 15.87 | 25.25 0.62 0.180 | 0.191 0.94
bbmat 40.88 | 14.07 2.90 41.42 | 48.74 0.84 0.190 | 0.184 1.03
shermanACb 0.31 0.14 2.21 0.10 0.11 0.90 0.009 | 0.009 1.00
Mean/Median 2.1/2.2 0.91/0.88 0.97/0.98
TABLE 5.4

MA41_UNS ordering, factorization and solution time (in seconds). ratio : ratio of CMLS statistic
/ DMLS statistic. Mean (resp. Median) : mean (resp. median) of the ratio CMLS statistic / DMLS
statistic.

Table 5.5 shows that SuperLU DIST often does not compute an accurate solution if
the CMLS ordering is obtained with a structural metric (compare the number of entries
with x in columns STR and HYB). With the hybrid strategy to select pivots, some more
pivots are postponed by CMLS because of their numerical values. We observe that this
often results in an increase in the fill-in in the factor with respect to a structural metric
(compare columns STR and HYB) but improves the numerical reliability of the CMLS
pivot sequence. Note that we only report the median values because large variations
of gains perturb the average statistics.

107 107 10° 10 107 107 10° 10
cms cms

(a) Component-wise backward, step 2. (b) Component-wise backward, step 4.

F1G. 5.1. SuperLU_DIST component-wise backward error during iterative refinement.

Figure 5.1 compares the component-wise backward errors during iterative
refinement with the CMLS and DMLS orderings (results after 2 and 4 steps). In
each plot, a data point above the diagonal corresponds to a matrix for which CMLS
performs better in terms of component-wise backward error. Is it clear that using the
CMLS ordering improves the numerical behavior of SuperLU DIST. There are still two
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Size of factors Number of operations
Matrix STR | ratio HYB | ratio STR | ratio HYB | ratio
av41092 *5773 0.72 *5993 0.74 | 1.12e+09 0.46 | 1.28e+09 0.52
g7jac200sc *20394 0.92 20404 0.93 1.08e+10 1.18 1.11e+10 1.21
g7jac180sc *19537 1.01 17426 0.90 | 1.26e+10 1.47 | 8.75e+09 1.02
jan99jac120sc 1923 0.82 1923 0.82 | 2.57e+08 0.64 | 2.57e+08 0.64
jan99jac100sc 1532 0.87 1532 0.87 | 2.04e+08 0.80 | 2.04e+08 0.80
lhr34c *3342 1.19 3645 1.30 | 2.80e+08 2.09 | 4.19e+08 3.13
lhr71c *7241 1.15 9434 1.50 | 7.25e+08 1.73 | 2.07e+09 4.93
mark3jac120sc 10847 1.04 10624 1.02 | 4.84e+09 1.17 | 4.29e+09 1.04
mark3jac140sc *12552 1.01 12673 1.02 | 5.56e+09 1.13 | 5.53e+09 1.12
bayer01 909 0.66 909 0.66 | 1.80e+07 0.37 | 1.80e+407 | 0.37
sinc18 *24234 0.84 26702 0.93 | 3.46e+10 0.82 | 4.18e+10 1.00
sincl5 *11768 0.88 13447 1.00 1.17e+10 0.86 1.50e+410 1.10
Zhao2 *10954 0.87 | *11174 | 0.89 | 5.94e+09 0.78 | 6.36e+09 0.84
mult_dcop-03 524 1.40 520 1.39 | 1.45e+07 | 4.84 | 1.30e+07 | 4.35
twotone 7118 0.90 7030 0.89 | 4.45e+09 1.06 | 4.38e+09 1.05
onetonel 2579 0.93 3020 1.09 | 7.98e+08 0.83 | 1.05e+09 1.10
torsol *30156 0.88 | *29455 0.86 | 2.35e+10 1.05 | 1.98e+10 0.88
fidapm11 *20777 0.99 21373 1.02 1.31e+10 0.96 1.41e+10 1.04
bbmat 36522 0.70 43074 | 0.82 | 2.07e+10 0.33 | 2.92e+10 0.47
shermanACb 342 0.85 347 | 0.87 | 1.62e+07 0.64 | 1.74e+407 | 0.69
cavityl6 *321 0.77 330 0.79 1.86e+07 0.57 | 1.91e+07 0.58
INV-EXTRUSION-1 | *25550 1.06 25973 1.08 | 2.15e+10 1.19 | 2.26e+10 1.25
MIXING-TANK *44762 1.07 41760 1.00 | 7.54e+10 1.18 | 6.50e+10 1.02
Median 0.89 0.92 0.96 1.01
TABLE 5.5

SuperLU_DIST size of the factors (in thousands) and number of operations (in millions). STR:
the pivots are selected according to the AMFI structural metric. HYB: the pivots are selected using a
hybrid strategy. ratio : ratio of CMLS statistic / DMLS statistic. Median : median value of the ratio
CMLS statistic / DMLS statistic. *: after iterative refinement, the backward error is greater than 1078,

matrices (av41092 and Zhao2) for which, with either CMLS or DMLS ordering, iterative
refinement does not converge to an accurate solution (upper right corner). The torsol
matrix is the only one for which DMLS approach succeeds whereas CMLS approach fails
(bottom right corner). There are four matrices in the upper left corner (lhr34c,
lhr71c, mult-dcop3 and fidapm1l) for which the backward error of SuperLUDIST
combined with DMLS remains larger than 10~® whereas SuperLU_DIST combined with
CMLS converges in less than four iterations. It is interesting to observe that the only
matrices for which CMLS with the hybrid strategy leads to significantly more fill-in
in the factors are the lhr34c, lhr71c and mult_dcop3 matrices on which DMLS did not
converge after iterative refinement (and independently of the number of steps). Note
finally that, with CMLS, on all problems except three we obtain an accurate solution
(backward error smaller than 10~8) with four steps of iterative refinement whereas,
with DMLS, iterative refinement did not converge on six matrices.

6. Concluding remarks. The originality of the CMLS algorithm relies on its
ability to compute an unsymmetric permutation with the following goals in mind:
to reduce the fill-in in the factors and to preselect numerically good pivots for the
factorization. It is based on a constraint matrix which contains the candidate pivots
and a quotient graph that is used to compute the structural metrics. The CMLS
algorithm can be used to design a family of orderings that can address a large class
of problems. The main results and the properties of the algorithm are summarized as
follows:
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e Significant reductions in terms of fill-in (13%) and flops (20%) have been
obtained with the structural strategy to select the pivots.

e Using structural metrics to select the pivots does not affect the numerical
behaviour of the MA41 UNS solver.

e On numerically difficult problems, CMLS can be used to improve the accuracy
of SuperLU_DIST and reduce the number of steps of iterative refinement during
the solution phase.

e Our generalized supervariables could be used in the context of DMLS to also
improve the metric computation.

One indirect but important consequence of our work is that we do not need
to limit our pivot choice to a maximum weighted transversal of the original matrix.
Preliminary experiments have shown that the maximum weighted matching can in fact
be substituted by a simpler structural maximum transversal during the preprocessing
phase (Step 1 as defined in Section 2). One possible direction for future work could
then be to design a parallel version of the preprocessing phase.

Furthermore, the constraint matrix C contains the information of an incomplete
factorization. We intend to use it as a preconditioner and to compare its quality and
cost with existing incomplete LU factorizations.

Finally in our paper we have focused on local strategies and on very unsymmetric
matrices. We also did experiments to compare our algorithms with global strategies
such as nested dissection and observed that our approach was generally better on
this set of test matrices. Combining our numerically based local heuristics with
structurally based global strategies is another interesting direction for future work.
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